Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Influenza Other Respir Viruses ; 16(5): 926-936, 2022 09.
Article in English | MEDLINE | ID: covidwho-1901696

ABSTRACT

BACKGROUND: Little RSV activity was observed during the first expected RSV season since the COVID-19 pandemic. Multiple countries later experienced out-of-season RSV resurgences, yet their association with non-pharmaceutical interventions (NPIs) is unclear. This study aimed to describe the changes in RSV epidemiology during the COVID-19 pandemic and to estimate the association between individual NPIs and the RSV resurgences. METHODS: RSV activity from Week (W)12-2020 to W44-2021 was compared with three pre-pandemic seasons using RSV surveillance data from Brazil, Canada, Chile, France, Israel, Japan, South Africa, South Korea, Taiwan, the Netherlands and the United States. Changes in nine NPIs within 10 weeks before RSV resurgences were described. Associations between NPIs and RSV activity were assessed with linear mixed models. Adherence to NPIs was not taken into account. RESULTS: Average delay of the first RSV season during the COVID-19 pandemic was 39 weeks (range: 13-88 weeks). Although the delay was <40 weeks in six countries, a missed RSV season was observed in Brazil, Chile, Japan, Canada and South Korea. School closures, workplace closures, and stay-at-home requirements were most commonly downgraded before an RSV resurgence. Reopening schools and lifting stay-at-home requirements were associated with increases of 1.31% (p = 0.04) and 2.27% (p = 0.06) in the deviation from expected RSV activity. CONCLUSION: The first RSV season during the COVID-19 pandemic was delayed in the 11 countries included. Reopening of schools was consistently associated with increased RSV activity. As NPIs were often changed concomitantly, the association between RSV activity and school closures may be partly attributed to other NPIs.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Netherlands , Pandemics , Respiratory Syncytial Virus Infections/epidemiology , Schools , United States
2.
Front Neurosci ; 15: 680932, 2021.
Article in English | MEDLINE | ID: covidwho-1485084

ABSTRACT

Objectives: Sleeping disorders are a common complaint in patients who suffer from an acute COVID-19 infection. Nonetheless, little is known about the severity of sleep disturbances in hospitalized COVID-19 patients, and whether these are caused by disease related symptoms, hospitalization, or the SARS-CoV-2 virus itself. Therefore, the aim of this study was to compare the quality and quantity of sleep in hospitalized patients with and without COVID-19, and to determine the main reasons for sleep disruption. Methods: This was an observational comparative study conducted between October 1, 2020 and February 1, 2021 at the pulmonary ward of an academic hospital in the Netherlands. This ward contained both COVID-19-positive and -negative tested patients. The sleep quality was assessed using the PROMIS-Sleep Disturbance Short Form and sleep quantity using the Consensus Sleep Diary. Patient-reported sleep disturbing factors were summarized. Results: A total of 79 COVID-19 patients (mean age 63.0, male 59.5%) and 50 non-COVID-19 patients (mean age 59.5, male 54.0%) participated in this study. A significantly larger proportion of patients with COVID-19 reported not to have slept at all (19% vs. 4% of non-COVID-19 patients, p = 0.011). The Sleep quality (PROMIS total score) and quantity (Total Sleep Time) did not significantly differ between both groups ((median PROMIS total score COVID-19; 26 [IQR 17-35], non-COVID-19; 23 [IQR 18-29], p = 0.104), (Mean Total Sleep Time COVID-19; 5 h 5 min, non-COVID-19 mean; 5 h 32 min, p = 0.405)). The most frequently reported disturbing factors by COVID-19 patients were; 'dyspnea', 'concerns about the disease', 'anxiety' and 'noises of other patients, medical staff and medical devices'. Conclusion: This study showed that both patients with and without an acute COVID-19 infection experienced poor quality and quantity of sleep at the hospital. Although the mean scores did not significantly differ between groups, total sleep deprivation was reported five times more often by COVID-19 patients. With one in five COVID-19 patients reporting a complete absence of night sleep, poor sleep seems to be a serious problem. Sleep improving interventions should focus on physical and psychological comfort and noise reduction in the hospital environment.

3.
J Am Coll Emerg Physicians Open ; 2(3): e12429, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1220440

ABSTRACT

BACKGROUND: Assessing the extent of lung involvement is important for the triage and care of COVID-19 pneumonia. We sought to determine the utility of point-of-care ultrasound (POCUS) for characterizing lung involvement and, thereby, clinical risk determination in COVID-19 pneumonia. METHODS: This multicenter, prospective, observational study included patients with COVID-19 who received 12-zone lung ultrasound and chest computed tomography (CT) scanning in the emergency department (ED). We defined lung disease severity using the lung ultrasound score (LUS) and chest CT severity score (CTSS). We assessed the association between the LUS and poor outcome (ICU admission or 30-day all-cause mortality). We also assessed the association between the LUS and hospital length of stay. We examined the ability of the LUS to differentiate between disease severity groups. Lastly, we estimated the correlation between the LUS and CTSS and the interrater agreement for the LUS. We handled missing data by multiple imputation with chained equations and predictive mean matching. RESULTS: We included 114 patients treated between March 19, 2020, and May 4, 2020. An LUS ≥12 was associated with a poor outcome within 30 days (hazard ratio [HR], 5.59; 95% confidence interval [CI], 1.26-24.80; P = 0.02). Admission duration was shorter in patients with an LUS <12 (adjusted HR, 2.24; 95% CI, 1.47-3.40; P < 0.001). Mean LUS differed between disease severity groups: no admission, 6.3 (standard deviation [SD], 4.4); hospital/ward, 13.1 (SD, 6.4); and ICU, 18.0 (SD, 5.0). The LUS was able to discriminate between ED discharge and hospital admission excellently, with an area under the curve of 0.83 (95% CI, 0.75-0.91). Interrater agreement for the LUS was strong: κ = 0.88 (95% CI, 0.77-0.95). Correlation between the LUS and CTSS was strong: κ = 0.60 (95% CI, 0.48-0.71). CONCLUSIONS: We showed that baseline lung ultrasound - is associated with poor outcomes, admission duration, and disease severity. The LUS also correlates well with CTSS. Point-of-care lung ultrasound may aid the risk stratification and triage of patients with COVID-19 at the ED.

4.
Chest ; 159(3): 1126-1135, 2021 03.
Article in English | MEDLINE | ID: covidwho-1099074

ABSTRACT

BACKGROUND: CT is thought to play a key role in coronavirus disease 2019 (COVID-19) diagnostic workup. The possibility of comparing data across different settings depends on the systematic and reproducible manner in which the scans are analyzed and reported. The COVID-19 Reporting and Data System (CO-RADS) and the corresponding CT severity score (CTSS) introduced by the Radiological Society of the Netherlands (NVvR) attempt to do so. However, this system has not been externally validated. RESEARCH QUESTION: We aimed to prospectively validate the CO-RADS as a COVID-19 diagnostic tool at the ED and to evaluate whether the CTSS is associated with prognosis. STUDY DESIGN AND METHODS: We conducted a prospective, observational study in two tertiary centers in The Netherlands, between March 19 and May 28, 2020. We consecutively included 741 adult patients at the ED with suspected COVID-19, who received a chest CT and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR (PCR). Diagnostic accuracy measures were calculated for CO-RADS, using PCR as reference. Logistic regression was performed for CTSS in relation to hospital admission, ICU admission, and 30-day mortality. RESULTS: Seven hundred forty-one patients were included. We found an area under the curve (AUC) of 0.91 (CI, 0.89-0.94) for CO-RADS using PCR as reference. The optimal CO-RADS cutoff was 4, with a sensitivity of 89.4% (CI, 84.7-93.0) and specificity of 87.2% (CI, 83.9-89.9). We found a significant association between CTSS and hospital admission, ICU admission, and 30-day mortality; adjusted ORs per point increase in CTSS were 1.19 (CI, 1.09-1.28), 1.23 (1.15-1.32), 1.14 (1.07-1.22), respectively. Intraclass correlation coefficients for CO-RADS and CTSS were 0.94 (0.91-0.96) and 0.82 (0.70-0.90). INTERPRETATION: Our findings support the use of CO-RADS and CTSS in triage, diagnosis, and management decisions for patients presenting with possible COVID-19 at the ED.


Subject(s)
COVID-19 , Emergency Service, Hospital/statistics & numerical data , Patient Admission/statistics & numerical data , Pneumonia, Viral , Radiology Information Systems , Tomography, X-Ray Computed , COVID-19/diagnosis , COVID-19/epidemiology , Clinical Decision-Making , Evaluation Studies as Topic , Female , Humans , Male , Middle Aged , Mortality , Netherlands/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/etiology , Prognosis , Radiology Information Systems/organization & administration , Radiology Information Systems/standards , Research Design/statistics & numerical data , SARS-CoV-2 , Severity of Illness Index , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL